



# ANALISIS ALGORITMA

Week 05: Pengantar Struktur Data

PROGRAM PASCA SARJANA INFORMATIKA FAKULTAS TEKNIK INFORMATIKA UNIVERSITAS TELKOM

2022/2023

# Struktur Data: Hash

## Pengalamatan Langsung (Direct Addressing)

- Nilai data digunakan sebagai indeks/alamat memori
  - Ingat bagaimana data digunakan pada metoda Counting Sort
  - Pemetaan 1 → 1 dari data menjadi alamat memori
- Insert: Set status lokasi yang akan diisi menjadi terisi! O(1)
  - o Ini kalau duplikasi tidak diperbolehkan, sebagai counter jika diperbolehkan (re. counting sort)
  - Memori disediakan untuk semua KEMUNGKINAN DATA, bukan sebanyak data
  - Setiap sel memori berukuran secukupnya, sebagai tag (Occ/Free) atau counter
- Delete: Reset status menjadi free atau kurangi counter! O(1)
- Search: Periksa apakah lokasi berstatus terisi atau tidak tidak nol! O(1)
- FindMax: ???, Halah, periksa semua lokasi???
- Alokasi memori terkait rentang maksimum nilai m, maka O(m)
  - $\circ$  Harus ada pengukuran utilisasi space,  $\alpha = n / m$  dimana n adalah jumlah data

## Fungsi Hash

- Pemetaan data kesuatu alamat memori
  - Mengurangi kebutuhan total alokasi memori
  - Tetapi, pasti akan ada resiko tabrakan pemetaan
  - $\circ$  Karena pemetaan n  $\rightarrow$  1 dari data ke lokasi memori
  - Semua lokasi memori harus bisa dipetakan agar terpakai, tidak ada blackhole/unusable space
- Co. operasi modulo: h(k) = k mod m
  - Jika max(k) = bm, maka b digit atas kunci tidak terpakai dalam pemetaan
  - o Gunakan nilai prima untuk m
- Co. operasi perkalian:  $h(k) = \lfloor m(k/A \lfloor k.A \rfloor) \rfloor$ , 0 < A < 1
  - Konstanta Knuth, A=0.618
  - Tidak terlalu sensitif terhadap nilai m yang digunakan

#### Struktur Hash

- Operasi Insert, Delete, Search bergantung pada probabilitas tabrakan
- Jika jumlah tabrakan O(p<sub>1</sub>), untuk p<sub>1</sub> operasi insert, dimana
  - $\circ$  p<sub>1</sub> = O(n), n adalah jumlah data tersimpan
  - p = total operasi SID pada Hash, dan juga p = O(n)
  - Maka rerata setiap operasi SID membutuhkan waktu O(1)
- Kasus worst case?
  - Ketika fungsi hash (selalu/dipaksa) tabrakan, maka O(n)
  - o dan menjadi O(m) dimana m adalah besar memori teralokasi untuk hash

## Fungsi Hash dan ReHash

- Penghindaran tabrakan?
  - Bergantung pada data
  - Bergantung pada distribusi hasil pemetaan
- Resolution ketika tabrakan?
  - rehash
  - chaining
- Rehash/Probing:  $h(k,i) = (h(k) + h_i(k)) \mod m$ 
  - o Dapat mengelompok, dimana sebagian area kosong dan sebagian lagi penuh data
- Universal Hash: Collection of hash functions h<sub>i</sub>(k), i=1..H
  - Diketahui probabilitas tabrakan per fungsi h<sub>i</sub>(k) adalah |H|/m
  - Rerata tabrakan menjadi 1/m jika fungsi dipilih secara acak

### Colision, Chain, dan Perfect Hash

- Nilai yang tabrakan disimpan dalam suatu list
- Untuk memperoleh O(1) pada worst case → Perfect Hash
  - Dua tingkat fungsi hash
    - Satu primer, fungsi h(k) yang biasa
    - Fungsi hash pada space sekunder untuk menangani tabrakan
  - Space sekunder otmatis diperbesar kuadratik terhadap jumlah tabrakan

### Hash vs. Struktur Lain

| Primitives | U-Array | O-Array      | Linked<br>List | O Linked<br>List | D Linked<br>List | BST           | Hash              |
|------------|---------|--------------|----------------|------------------|------------------|---------------|-------------------|
| Search     | O(n)    | O(n)/O(lg n) | O(n)           | O(n)             | O(n)             | O(lg n)/O(n)  | O(1) <sup>#</sup> |
| FindMax    | O(n)    | O(1)         | O(n)           | O(n)/O(1)        | O(1)             | O(lg n)/O(n)  | ?                 |
| Insert     | O(1)    | O(n)         | O(1)           | O(n)             | O(n)/O(1)        | O(lg n)/O(1)* | O(1) <sup>#</sup> |
| Delete     | O(n)    | O(n)         | O(n)           | O(n)             | O(1)             | O(lg n)/O(1)* | O(1) <sup>#</sup> |

<sup>\*)</sup> Diluar proses SearchParent atau FindMax

<sup>#)</sup> Perhitungan rata-rata, bukan worst-case

## Message Digest

- Hash juga digunakan untuk message digests
  - Rangkaian bits yang hampi unik untuk suatu data
- Berguna untuk memeriksa integritas data tersebut
- Berguna untuk keamanan data
- Co.
  - MD5 (Message Digest v5) 128 bits, by Ron Rivest, 1992 (RFC1321)
  - SHA256 (Secure Hash Algorithm) 256 bits, rev 2011 (RFC6234)